我们已经更新我们的隐私政策使它更加清晰我们如何使用您的个人资料。

我们使用cookie来提供更好的体验。你可以阅读我们的饼干的政策在这里。

广告

优化条件意味着试验与人类iPSC-Derived脊髓运动神经元,神经元Glutamatergic和混合皮质神经元

优化条件意味着试验与人类iPSC-Derived脊髓运动神经元,神经元Glutamatergic和混合皮质神经元内容块的形象
人类诱导多能干细胞(hiPSC)派生神经元现在被认为是一个更相关的模型系统体外神经和精神疾病。它们可以作为一个平台用于神经系统疾病模型,药物发现和毒性筛选。神经电活动的一个基本参数评估神经系统的功能。Micro-electrode数组(MEA)系统提供了一个非侵入性和label-free意味着评估从成千上万的神经元电生理活动在同一个板。越来越多的研究人员正在使用micro-electrode数组(MEA) hiPSC-derived神经元神经细胞表型特征并执行药物筛选。但实现稳定和一致的MEA录音在最短的文化时间仍然是一个挑战。为了生成一个健壮的协议意味着记录hiPSC——派生的神经元,我们评估的几个条件,这可能会影响文化的性能(1。神经元播种密度;2。播种介质;3所示。astrocyt eco-culture). These conditions were evaluated with BrainXell’s hiPSC-derived spinal motor neurons, cortical glutamatergic neurons and mixed cortical neurons. Our data demonstrate that different neuron types have different optimal seeding densities that can generate the most consistent and robust neuronal activity. Inclusion of BrainPhys neuronal medium as the cultures mature also contributes to consistent, synchronized signals, and astrocyte co-culture accelerates the network maturation. With our current protocol, cortical glutamatergic neurons started to show consistent synchronized signal as early as day 12 after seeding, and spinal motor neurons and mixed cortical neurons started to show on day 18. The synchronized network activity lasted for at least two weeks. The presented data demonstrate the suitable application of hiPSC-derived neurons coupled with MEA technology as a non invasive human neuronal test system that can be used for drug discovery and toxicity screening.
广告
Baidu