我们已经更新我们的隐私政策使它更加清晰我们如何使用您的个人资料。

我们使用cookie来提供更好的体验。你可以阅读我们的饼干的政策在这里。

广告

微流控芯片和癌症治疗

传统意义上,开发治疗癌症等疾病已经开始用简单的体外细胞培养模型之前动物。不幸的是大多数的治疗失败,高的相关成本,在很大程度上由于模型准确地代表疾病的复杂的病理生理学和生理的正常主机。器官是复杂的三维(3 d)结构组成的许多不同类型的细胞位于一个独特的空间布置,与细胞外基质交织。在船体,一直维护的方法和“审问”人体组织体外连续灌注模型,目的是保持组织的3 d vivo-like结构,保留复杂的细胞间和cell-to-matrix交互。人体组织我们学习了包括:鳞状细胞癌的头部和颈部(HNSCC);大肠癌癌和正常组织;卵巢癌;间皮瘤,胶质母细胞瘤和心脏。这种方法的局限性是组织可以维持的时间,这对不同的组织/不同肿瘤类型和为每个单独的肿瘤。四天几乎没有组织病理学变化可以观察到所有组织研究和功能似乎没有。 For drug toxicity studies a 9-day incubation period was used on HNSCC to show the additive effect of using multiple chemotherapy drugs on cell death. For studying irradiation effects on colorectal and HNSCC biopsies a 4-day time frame was used; these are measured by immunohistochemical analysis (Ki67, ?H2AX, M30) of the tissue post-irradiation. As expected higher doses or fractionated delivery caused increased cell death. The major challenge now is to undertake the correlative or pseudo-clinical trials in which the tissue-on-chip treatments are compared with the patient response following delivery of the same treatment regimen. An advantage of the lab-on-a-chip approach is that simultaneously other treatments can be tested.

满足作者
约翰格林曼
约翰格林曼
赫尔大学
广告
Baidu