我们已经更新了隐私政策为了更清楚地说明我们如何使用您的个人资料。

我们使用cookie为您提供更好的体验。你可参阅我们的饼干的政策在这里。

广告

人ipsc来源的脊髓运动神经元、谷氨酸神经元和混合皮质神经元的MEA实验条件优化

人类诱导多能干细胞(hiPSC)衍生的神经元现在被认为是体外神经和精神疾病的更相关的模型系统。它们可以作为神经系统疾病建模、药物发现和毒性筛选的平台。神经电活动是评估神经系统功能的重要参数之一。微电极阵列(MEA)系统提供了一种非侵入性和无标签的方法来评估同一平板上数千个神经元随时间的电生理活动。越来越多的研究人员使用微电极阵列(MEA)与hipsc衍生的神经元来表征神经元表型和进行药物筛选。但是在尽可能短的培养时间内实现稳定和一致的MEA记录仍然是一个挑战。为了在hiPSC衍生神经元上生成一个稳健的MEA记录协议,我们评估了几个可能影响培养性能的条件(1)。神经元播种密度;2.播种介质;3.astrocyt eco-culture). These conditions were evaluated with BrainXell’s hiPSC-derived spinal motor neurons, cortical glutamatergic neurons and mixed cortical neurons. Our data demonstrate that different neuron types have different optimal seeding densities that can generate the most consistent and robust neuronal activity. Inclusion of BrainPhys neuronal medium as the cultures mature also contributes to consistent, synchronized signals, and astrocyte co-culture accelerates the network maturation. With our current protocol, cortical glutamatergic neurons started to show consistent synchronized signal as early as day 12 after seeding, and spinal motor neurons and mixed cortical neurons started to show on day 18. The synchronized network activity lasted for at least two weeks. The presented data demonstrate the suitable application of hiPSC-derived neurons coupled with MEA technology as a non invasive human neuronal test system that can be used for drug discovery and toxicity screening.
广告
Baidu